
 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Demo Scene Quick Start
1. Import the Mount Point package into a new project.

2. Open the MP_Demo scene.

Assets\ootii\MountPoints\Demos\Scenes\MP_Demo

3. Press play.

The buttons on the left will allow you to mount weapon and armor on our hero.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Custom Scene Quick Start
1. Import the Mount Points package into your project.

2. Select your character and add a Mount List component.

3. Add mount points.

Once you add mount points to this game object, you

can do the same thing to another object. As you drag

the objects so mount points touch, they will snap

together.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Foreword
Thank you for purchasing Mount Points!

I’m an independent developer and your feedback and support really means a lot to me. Please don’t ever hesitate to

contact me if you have a question, suggestion, or concern.

The latest version of the documentation can be found online:
http://www.ootii .com/Unity/MountPoints/MPUserGuide.pdf

I’m also on the forums throughout the day:
http://forum.unity3d.com/threads/235816-Mount-Points

Tim
tim@ootii.com

Demo Scene Quick Start ... 1

Custom Scene Quick Start ... 2

Foreword ... 3

Overview ... 4

Features .. 4

Understanding Mount Points .. 5

Mount List vs. Mount .. 8

Creating a Mount Point – Example 1 .. 9

Creating a Mount Point – Example 2 .. 11

Connecting Mount Points – Editor .. 12

Code .. 13

Skinned Meshes .. 15

Support.. 18

http://www.ootii.com/Unity/MountPoints/MPUserGuide.pdf
http://forum.unity3d.com/threads/235816-Mount-Points
mailto:tim@ootii.com

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Overview
Unity has a pretty good system for connecting objects together. The problem is that if you have a skeleton, finding and

managing those connections isn’t easy at all.

Mount Points is a super simple tool for connecting objects together and managing those relationships.

With Mount Points, you can simply drag two objects together and when their mount points get close, they snap

together like magnets or Legos™. Drag the objects away from each other and they come apart. Mount Points manages

the relationship, orientation, and scale for you.

Mount Points doesn’t try to recreate Unity’s hierarchy, it leverages and simplifies it.

New in version 2.0 is the ability to mount and manage skinned meshes. With the new user interface, you can set clothing

up at edit-time and have them exist at run-time. Use skinned item masks to keep body parts from poking through your

clothes.

Features
Mount Points supports the following features:

¶ Simplified object connections

¶ Easy access through editor or code

¶ Preserves child scale

¶ Precise position snapping

¶ Precise orientation snapping

¶ Mount points attach to bones for animating

¶ Supports skinned meshes

¶ Skinned mesh masks to hide ‘poke-throughs’

¶ Set clothing up at edit-time

¶ Supports prefabs

¶ Supports skinned meshes

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Understanding Mount Points
Mount points are like magnets; they work in pairs. When two mount points are close together, they snap together and

create a parent-child relationship.

The object being dragged is the child and the object it’s dragged to is the parent.

Colors
Mount points in the scene are colored to help determine who they belong to.

White mount points simply show mount points

that exist in the scene for any object.

Yellow mount points are mount points that exist

on the currently selected object.

The green mount point represents the mount

point that is currently selected in the inspector.

Unity Hierarchy
The mount point system doesn’t create its own hierarchy. Instead, it leverages what Unity has already done. That means

it works natively with any other Unity system.

When a mount point is created, you’ll actually find it inside of the Unity hierarchy. In the example below, the ‘Right

Hand’ mount point is a child of the skeleton’s ‘Right Hand’ bone.

Child being dragged

Child mount point

Parent
Parent mount point

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

By tying mount points to bones in this way, as the animation moves the bone, the mount point (and anything connected

to it) moves as well.

When another object ‘snaps’ its mount point to a parent mount point, it then becomes a child in the hierarchy too.

The Mount Point Inspector will keep the Unity hierarchy in sync as mount points are created, moved, and deleted. You

don’t have to manage anything yourself.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Mount Point Orientation
Once connected, child mount points orient themselves (and the GameObjects that own them) to the rotation of the

parent mount point.

This allows you to take objects created from different authors or that are oriented different ways and get the same

result when you mount them.

Take two swords for example. One could be created standing on its

end (the right one) while another could have been created lying

down (the left one). When we put them in the character’s hand, we

want them to be rotated as if the character is holding them

regardless of how they were created.

This is done with the mount point’s ‘orientation’ property.

When we build the mount points for the swords, we’ll make sure

they are oriented to fit the parent correctly.

For the two swords, we want the mount points to be position at

the hilt with the forward direction (blue arrow) along the blade.

This is because when we build the mount point for the hand, we’re going to have that mount point’s forward direction

(blue arrow) coming out of the hand too.

When the sword is connected to the hand, it will automatically rotate so

that its orientation matches the orientation of the hand’s mount point.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Mount List vs. Mount
To use mount points with an object, a Mount List or Mount component needs to be added to a game object. Both of

these objects are containers that manage the contained mount points.

Mount List
The Mount List is a beefy container that allows you to setup multiple mount

points and skinned items. Typically, this is the component you’ll use on

characters, vehicles, etc.

The top section is used to manage all the mount points. Other mount points

can then be connected to these.

The bottom section is used to manage the skinned mesh items that are

mounted to your character. By adding items, you can instantiate them in the

editor or flag them to be created at run-time.

Mount
The Mount is a lighter version that contains one mount point.

This component is handy when you’re dealing with objects that will only be

children to other mount points. For example, swords, shields, tails, etc.

It should be noted that the mount point held by a Mount cannot have

children themselves.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Creating a Mount Point ς Example 1
Mount points must be created in the Unity editor. Once you’ve created mount points for an object, you can create a

prefab just like you do any other object.

The mount points will be saved with the prefab.

1. Select the GameObject

нΦ !ŘŘ ǘƘŜ ΨaƻǳƴǘΩ ŎƻƳǇƻƴŜƴǘ
The Mount Points script are part of the ‘com.ootii.Actors’ namespace and can be found under:

ôScripts \ ootii \ MountPoints \ Actors \ MountPointsô.

3. Add a mount point
Click the ‘+’ button under the ‘Mount Points’ section to add a mount point. Once added, rename the mount point

something meaningful. It helps if mount points on the same object are uniquely named, but it’s not required.

4. Move and Rotate the Mount Point
Using the mount point’s editor handles, we can drag the mount point to the sword’s handle (if needed).

As discussed earlier, we know the avatar’s hand mount point will have the forward direction (blue arrow) coming out of

the hand pointing in the direction of the blade. When we attach the sword to it, it will automatically rotate to have this

mount point’s orientation match that of the hand’s mount point.

So, we want to set the orientation of the mount point so that the forward direction (blue arrow) runs along the blade.

Do this with the ‘Orientation’ fields in the inspector.

In this step, you’re really just going to be moving and rotating the mount points as you see fit.

5. Set Properties
Lastly, we set the properties for the mount point.

In this case, we want the sword to be a child and don’t expect to have anything use it as a parent. So, using a ‘Mount’ is

fine.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

In order to prevent the mount point from accidentally being moved or rotated, we’ll also set it as ‘Locked’ in the mount

point list.

In order for a mount point to be a child and snap to a parent, it must be locked!

Summary
At this point, we’ve setup a mount point and placed it where we want it. We’ve also rotated it in the direction we want it

facing. It doesn’t matter if you’re setting up a mount point you’re expecting to be a parent, a child, or both. They are all

setup the same.

If needed, you could save this object as a prefab. This is great if you plan on creating the object through code later.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Creating a Mount Point ς Example 2
In this example, let’s setup the mount point for the hand that would hold the sword. We won’t have as many pictures

because the steps are pretty much identical.

1. Select the GameObject

нΦ !ŘŘ ǘƘŜ Ψaƻǳƴǘ ListΩ ŎƻƳǇƻƴŜƴǘ

3. Add a mount point

4. Move and Rotate the Mount Point
In this case, we’re going to move the mount point to the right hand. Then, we’ll rotate it (if needed) so the forward

direction (blue arrow) is coming out of the hand.

5. Set Properties
Lastly, we set the properties for the mount point. In this case, we want the hand mount point to grab items (like the

sword). So, we keep the ‘Allow Children’ check mark.

In order to prevent the mount point from accidentally being moved or rotated, we could set it as ‘Locked’. However,

since this mount point won’t be the child of another mount point, I actually leave the ‘Locked’ flag off. The reason is that

it allows me to move the mount point while it’s holding something. It’s a good way to make sure it’s in the right position.

6. Set the Bone
So, this is a new option.

If we don’t set any bone value, the mount point is relative to the GameObject’s origin. That’s fine for objects that don’t

have skeletons or animations. However, if you do have animations, we actually want the mount point to move.

In this case, we want the mount point tied to the avatar’s right hand bone. So, in the Mount Point Properties, we set the

bone to ‘Unity RightHand’.

With that set, the mount point will move with the bone. Anything the mount point parents (like a sword) will move as

well.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Connecting Mount Points ς Editor
With two or more mount points setup, it’s now just a matter of moving the GameObjects so that the mount points are

close enough to attract.

Remember that the object you’re moving is the child. When you let go of the drag handle, the child object will move to

the position of the parent mount point (assuming they are close enough). Following our examples above, you’d move

the sword so it’s mount point is close to the right hand’s.

What you’ll see is that the child’s inspector will change a bit. The new parent object + mount point names will display

along with an options to select the parent object or break their connection.

If you were to look at the parent mount point, you’d see that it lists the children connected to it:

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Code
Connecting mount points through code is just as easy.

There are several functions on the MountPoints and Mount objects to help you out.

Note: The “Mount List” component is actually the “MountPoints” class defined in the MountPoints.cs file.

Following standard Unity coding practices, you can get the MousePoints and Mount component from the GameObject

using the following syntax:

MountPoints mMountPoints = rParentObject.GetComponent< MountPoints >();

Mount lMount = rParentObject.GetComponent< Mount>();

Once you have the MountPoints (or Mount) object, you can use the following functions:

CreateMountPoint
ConnectMountPoints
DisconnectMountPoints
GetMountPoint
GetSkinnedItem
AddSkinnedItem
RemoveSkinnedItem

Code Sample
In the demo, I use a C# file named SampleUI.cs. In it, you’ll find several ways in which I connect objects through code.

For ease, I’m listing key parts here so you can see how I’m using MP in code:

mMountPoints.ConnectMountPoints("Right Hand" , GameObject.Find("Sword"), "Mount Point");

mMountPoints.DisconnectMountPoints(lSwordMP);

mMountPoints.ConnectMountPoints("Left Arm", GameObject.Find("Shield"), "Mount Point");

mMountPoints.ConnectMountPoints("Head" , "Prefabs/Armor/Helmets/Helmet" , "Head");
mMountPoints.RemoveSkinnedItem("Hair");

mMountPoints.AddSkinnedItem("Prefabs/Armor/Shirts/Shirt_02" , "Prefabs/Armor/Shirts/S hirt_02_mask");

mMountPoints.RemoveSkinnedItemFromPath("Prefabs/Armor/Shirts/Shirt_02");

mMountPoints.AddSkinnedItem("Prefabs/Armor/Pants/Pants_02" , "Prefabs/Armor/Pants/Pants_02_mask");

mMountPoints.AddSkinnedItem("Prefabs/Armor/Shoes/Boots_02" , "Prefa bs/Armor/Shoes/Boots_02_mask");

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Content
In order to instantiate skinned items at run-time using code, prefabs and mask textures need to be placed in a

‘Resources’ sub folder. This will tell Unity to package the assets up even if they aren’t currently active in the scene.

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Skinned Meshes
In additions to managing static meshes through mount points, this asset can also manage skinned meshes in order to

clothe your character, add appendages, etc.

One of the advanced features of Mount Points is the ability to apply a ‘Body Skin Mask’ with each skinned mesh. This

greatly reduces penetration of the underlying body through the mesh.

Using body skin mask, you can create “skin tight” clothing without worrying about the character popping through.

Note: Some solutions use bone manipulations and blend shapes to morph their characters. Most bone manipulations

will carry through to the skinned meshes. However, blend shapes do not as those control vertices and not the bones.

Body Skin Renderer
When Mount Points ties the clothing to the body, it needs to look at the bones in the body as well as grab the material

being used.

You’ll need to set the SkinnedMeshRenderer used by your character in

the Body Skin Renderer field.

If you leave the field empty, Mount Points will try to find the right

SkinnedMeshRenderer, but if you have multiple ones… there’s no

guarantee it will pick the right one.

Body masks off

Body masks on

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Skinned Items
Skinned items can be created at edit-time or run-time.

To create items at edit-time, simply enter the resource path to the mesh and a

resource path to the mask.

When no instance exists, press the blue “+” icon in the skinned item details to

create it or allow it to be created when the game starts using the ‘Instantiate

On Start’ check box.

Unity Paths
In order to create objects at run-time, Unity needs your assets in a “Resources” folder. Otherwise, if the asset isn’t

referenced in the scene… it won’t be part of your build and the path will fail.

To learn more about Unity’s “Resources” folders, you can read about them here:
http://wiki.unity3d.com/index.php/Special_Folder_Names_in_your_Assets_Folder

Skinned Meshes
Skinned meshes are tied to the bones they wrap. That means you can’t simply take a skinned mesh built for one

skeleton and use it for another. Since the skin is tied to each bone’s position and rotation, the skin would animate oddly

if it were used on a different skeleton.

Ensure your skinned meshes are built for the skeleton you’re wrapping.

To learn more about creating skinned meshes, see the “CustomContent” document found in the

Assets/ootii/MountPoints/Extras folder.

http://wiki.unity3d.com/index.php/Special_Folder_Names_in_your_Assets_Folder

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Skinned Item Mask
A Skinned Item Mask is a black and white image based on the full body texture of the character you’re attaching the

skinned mesh to. When running, the masks will be applied to the diffuse texture in order to turn parts of the character

invisible. White areas of the mask allow the diffuse texture to be seen. Black areas turn the corresponding parts of the

diffuse texture invisible.

Once you hit play, the mask above will cause the characters legs to become invisible and the skin won’t bleed through

the pants.

To use this feature, your skin’s material’s shader needs to support transparencies. I typically set the Rendering Mode to

“Cutout”. For some characters like Morph3D and Mixamo, it means changing the shader your skin material uses.

Morph3D Suggestion
Assets/MORPH3D/Content/StarterPacks/Male/MCSMale/M3DMaterials/Genesis2Male.mat

Mixamo Suggestion

 ASSET VERSION 2.0

support@ootii.com ootii | www.ootii.com

Support
If you have any comments, questions, or issues, please don’t hesitate to email me at support@ootii.com. I’ll help any

way I can.

Thanks!

Tim

mailto:support@ootii.com

